Lossless compression of predicted floating-point geometry

نویسندگان

  • Martin Isenburg
  • Peter Lindstrom
  • Jack Snoeyink
چکیده

The size of geometric data sets in scientific and industrial applications is constantly increasing. Storing surface or volume meshes in standard uncompressed formats results in large files that are expensive to store and slow to load and transmit. Scientists and engineers often refrain from using mesh compression because currently available schemes modify the mesh data. While connectivity is encoded in a lossless manner, the floating-point coordinates associated with the vertices are quantized onto a uniform integer grid to enable efficient predictive compression. Although a fine enough grid can usually represent the data with sufficient precision, the original floating-point values will change, regardless of grid resolution. In this paper we describe a method for compressing floating-point coordinates with predictive coding in a completely lossless manner. The initial quantization step is omitted and predictions are calculated in floating-point. The predicted and the actual floating-point values are broken up into sign, exponent, and mantissa and their corrections are compressed separately with context-based arithmetic coding. As the quality of the predictions varies with the exponent, we use the exponent to switch between different arithmetic contexts. We report compression results using the popular parallelogram predictor, but our approach will work with any prediction scheme. The achieved bitrates for lossless floating-point compression nicely complement those resulting from uniformly quantizing with different precisions. q 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lossless Compression of Floating-Point Geometry

The geometric data sets found in scientific and industrial applications are often very detailed. Storing them using standard uncompressed formats results in large files that are expensive to store and slow to load and transmit. Many efficient mesh compression techniques have been proposed, but scientists and engineers often refrain from using them because they modify the mesh data. While connec...

متن کامل

JPEG2000 Compatible Lossless Coding of Floating-Point Data

Many scientific applications require that image data be stored in floating-point format due to the large dynamic range of the data. These applications pose a problem if the data needs to be compressed since modern image compression standards, such as JPEG2000, are only defined to operate on fixed-point or integer data. This paper proposes straightforward extensions to the JPEG2000 image compres...

متن کامل

Distance Field Compression

This paper compares various techniques for compressing floating point distance fields. Both lossless and lossy techniques are compared against a new lossless technique. The new Vector Transform technique creates a predictor based upon a Vector Distance Transform and its suitability for distance field data sets is reported. The new technique produces a lossless encoding at a third of the file si...

متن کامل

Optimal Compression of Floating-Point FITS Images

Lossless compression (e.g., with GZIP) of floating-point format astronomical FITS images is ineffective and typically only reduces the file size by 10% to 30%. We describe a much more effective compression method that is supported by the publicly available fpack and funpack FITS image compression utilities that can compress floating point images by a factor of 10 without loss of significant sci...

متن کامل

The MPEG-4 Audio Lossless Coding (ALS) Standard - Technology and Applications

MPEG-4 Audio Lossless Coding (ALS) is a new extension of the MPEG-4 audio coding family. The ALS core codec is based on forward-adaptive linear prediction, which offers remarkable compression together with low complexity. Additional features include long-term prediction, multichannel coding, and compression of floating-point audio material. In this paper authors who have actively contributed to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2005